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OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

. v .
Vaclav E. Benes and loannis Karatzas

ABSTRACT

In the present paper we consider the following stochastic

control problem: minimize the average expected total cost

-3

T
J(x,u) = lim inf 1 Ez I0[¢(£t) + |ut(€)|]dt

T

subject to df, = u _(g)dt + dw,, £, = x; [u] < 1, w
t t t 0 - t

with all bounded by unity and measurable functionals on the past

Wiener,

of the state process {6, s ¢ t} admissible as controls. It is

proved that under very mild conditions on the running cost function

¢(-) the optimal law is of the form
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The cutoff point b and the performance rate of the optimal law
*are simultaneously determined in terms of the function ¢(-)

through a simple system of integrotranscendental equations.




OPTIMAL STATIONARY LINEAR CONTROL OF THE WIENER PROCESS

1. INTRODUCTION

~:§ In 'this paper we consider the problem of stationary control of

the stochastic differential equatlgg) dEt = ut(g)dt + dwt; 50

. where7 (W) =—twrt+—+--0). is a Wiener process on an underlying
/x/ﬁ?;g;;ility space, (%P7 .

f

)

Ops,v Two kinds of cost are involved in this problem. First, one

R

Pl\ (ze 28 s“b -'V ; s ".fﬂ Sub .tJ-/

pays &f&zﬂ per unit time for being in the wrong state )WE’

where ¢(-) 1is a suitable cost function to be descrlbed later “///

secondly, one pays ="€u t<~per un1t1t1me for using the control
A ‘-‘ ety 0
law yt " The control problem is to choose a law ut(E) as a non-
(

anticipative functional of the solu;iqn ppggggszf(gt) with values
in the bounded interval [-1,1],\50 as to minimize the average
expected total cost.

It is proved that the optimal law can be egplicitly described
and its performance characterized in terms of the cost function el
$(+). The method consists in first restricting attention to an
important subclass of admissible control laws, namely thosL giving
rise to an ergodic solution process (Et). A process is said to
be ergodic if it admits a unique invariant distribution. The
optimal law u* in this subclass can be obtained by using a
dynamic programming approach, similar to that of Wonham [11];

-it turns out that u" 1is of the form

*
Ut(g) -Sgn gts Igtl >b
(1.1)

=0, |[&.] <b

¢]

C tvabe o ah e Same




‘where b 1is a positive constant that can be characterized in terms
of the function ¢(:). Secondly, the law u* s proved optimal
against any possible nonanticipative law u whatsoever.

The result (1.1) is the natural and expected one; it says that
the best policy is to push Et with full force in the negative

direction if it is too positive and in the negative direction if it

is too negative, while refraining from any action if Et is in-

side a '"dead-zone'" {-b,b]. The appearance of the latter is a con-
sequence of the running cost |[u| on the control, of the fact that

the control is "expensive'. Were such a cost absent, it is fairly

obvious - ane easily probable by using the methods of the present
paper - that the optimal policy would be described by the '"bang-bang"
law: -sgn ﬁt.

Among previous works on the topic of stationary control of
systems driven by a Wiener process we cite those of Wonham [11] and
Kushner [8]. The scope of both was severely restricted, however,
in that they allowed only thosc laws that generate an ergodic solutio

process (actually, only a subclass of these was considered).

2. FORMULATION
Consider the space @ = C[0 T] of real-valued, continuous

functions on (0,T], for some T > 0. Let (&t) denote the family |

of evaluation functionals on C[0 T] and F0 <t < T the

o-field of subsets of C generated by {ﬁs; s < t}.

[0,T]

Consider also the o-field _# of subsets M of |[0,T] x C[O T]

belongs to 3@

having the property that, for any t € [0,T], M,

and that each £-section Mg of M, & € C[0 T] is Lebesgue measurabl:
’

A function g defined on [0,T) X C[0,T] 1is _#-measurable if




-and only if g(t,-) is _AQ-measurable, for each t, and g(-,£) is

Lebesgue measurable, for each §.

Definition 2.1: Let the control measure space be the interval

[-1,1) with its Borel sets. An admissible nonanticipative control

law u is a measurable function wu: ([0,T] X C[0 T]’“‘j + [-1,1].

The class of all such control laws is denoted by %.

For any control law u € % and any x € IR, a weak solution

(Et) to the stochastic differential equation

(2.1) d6, = u (E)dt + dw.; 0 <t <T

(2.2) £E =X

is constructed as follows: one starts with the probability space
(Q,_f%,P), where P 1is Wiener measure on § = C[0 ] Corre-

’
sponding to each law u € % and each initial position x € IR, the
new measure

T T i
u _ 1 2
(2.3) Px(dw) = exp Jout(g)dwt 5 IO ut(é)dt ‘P(dw)

is constructed on (Q..9%), where (Et) is the process defined

by E¢ T X * W5 0 < t < T. According to Girsanov [5], Pi is a

probability measure on (Q,.9%) and the process

~ A t t
(2.4) W = oW - fous(ﬁ)ds = Et - x - Jous(ﬁ)ds
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sammaEnay . . .

is a Wiener process on (Q,.?%,P:). Equation (2.4) is an equivalc

way of saying that the process (&t), ﬁt =X *+w.; 0t T

satisfies the stochastic differential equation

(2.1) dg u, (8)dt + d&t; 0 <t<T

t

(2.2) £, = x

on (Q,_?%,Pz). A1l processes involved here are adapted to the
underlying family ( 5%) of sub-o-fields of 5%. The process

(€t) is called a weak solution of (2.1)'-(2.2) because by con-

struction o(ﬁs; s < t) < o(&s; s < t), though not necessarily the
other way around. Such a solution is known to be unique in the
sense of the probability law; see Liptser and Shiryayev [9].

Now considpr a function ¢: R + Rf which is even, convex
pliecewise C(Z), monotonically incrcasing to infinity on x > 0,

and satisfying an exponential growth condition:

(2.5) ¢ (x) = O(ealxl) as |x| + ~, some 0 <o < 2,
\

The optimal control problem can now be formulated as follows:

choose a law u € % for which the limit i

xy _ q1:. 1 .u* *
Joout) = lin 1 Ey fOT(zv(et) v Jul @) Dt

exists for all x € R, and which minimizes the average expected

e

total cost rate




T
(2.6) J(x,u) = 1lim inf % tY JO[¢(€t) + Iut(E)I]dt

T-+oo X

of starting at place x and using control law u, for all
(x,u) € [Rx %2]. Ez denotes expectation with respect to the

probability measure Pi introduced in (2.3).

3. SUMMARY

In Section 4 we briefly study the important subclass of feed-
back (Markov) admissible control laws. It is pointed out (and in
the special case of time-homogeneous feedback laws, proved) that
for such controls the stochastic differential equation (2.1)-(2.2) ¢
the system can be solved in the strong sense.

In Section S we consider a subclass of time-homogeneous feed-
back laws that give rise to an ergodic solution process. Asymptotic
properties of those processes, such as existence of a unique invaria
measure, laws of large numbers and ergodicity of their distributions
are discussed.

The optimal law u® in the abovementioned subclass is
discerned in Section 6 and it is proved that u* is of tHe form
(1.1). Both the cutoff point b and the asymptotic performances A
rate of u* are characterized in terms of the cost function $(:),
through the system of integrotranscendental equations (6.3), (6.4).
The method proceeds by constructing a solution to the '"asymptotic"
version of the Bellman equation of dynamic programming (6.2).

Finally, the asymptotic performance of the law s
compared against that of any admissible nonanticipative control u

in %. The result, proved in Section 7, is that u* s actually




optimal in the (largest possible) class %. The idea employed

here is to first compare the performance of the control laws ove:

finite time intervals {0,T] and then pass to the limit as T -
\A

4. MARKOV LAWS AND STRONG SOLUTIONS

Definition 4.1. Suppose there exists a measurable function

y: R * [0,T] » [-1,1] such that the nonanticipative law u € %
can be represented in the form
(4.1) u, (§) = v(&

t), any & € C 0 <t <T.

[O’T], - -

Then u 1is called an admissible Markov law. The class of all

such laws will henceforth be denoted by /; obviously o< 9.
For laws in 4 the stochastic differential equation

(4.2) g = Y(Et,t)dt + dwt, £, = X

t 0

is known to possess a pathwise unique, strong nonanticipative

solution, in the sense that the solution is adapted to the Wiener

process: O(EQ; s <t) O(ws; s <t), 0 <t <T; see Zvonkin [12]

Definition 4.2. Consider the subclass of o «consisting of

those admisc<ible nonanticipative laws u for which there exists &

measurable function a: R + [-1,1], such that

(4.3) ut(E) = a(&t), any § € C[O,T]’ 0 <t <T.

I




>

Such laws u are called admissible time-homogeneous Markov laws

and their class is denoted by .

For laws in & one can easily construct the (pathwise unique) '

strong solution to the stochastic differential equation

d&t = a(&t)dt + dwt, 0 <t<T

(4.4) 4
g() = X.

Indeed, consider the function i
X Y

(4.5) B(x) = J exp{-Z[ a{z)dzldy; x € R
0 0

which is continuous, strictly increasing and satisfies the equation

B + 2aB'= 0, The function
(4.6) o(x) = B' (B L (x)); x €R

|
is Lipschitz continuous, as can be checked by simple calculus.

Therefore the stochastic differential equation

(4.7) do, = 0(,)dw,; 0 <t < T L

. (4.8) CO B(x) ‘ 1

has for any x € R a pathwise unique solution (Ct) on the

probability space (9, #.,P), strong in the sense that

e




o(cs; s <t) e o(ws; s <t), any 0 <t < T, according to It8's
classical theory; see for instance Gihman and Skorohod {4]. Denote
by (@, 5%, 57,Ct,PE(X)} the corresponding time-homogeneous Markov

process

The process

i

- a1l
(4.9) Et = B (Ct)

is now well defined, and an application of Itd's rule gives

wigl
1 p FUEBT(e))

ds, = ds, - > T 3

t -1 t ' -1 S
B (871 (5,)) (8" (871 (6)))

2
Y (Ct)dt

= a(it)dt + dwt.

So (Et) satisfies both the equation and the initial condition

in (4.4) and because it is a bijection of (% pointwise in

t)

time:

of,e5 s <t} =ole ;s <ty eofw, s <t}, 0<t<T

i.e. (6 is a strong solution to (4.4). The corresponding time-

t)
homogeneous Markov process is denoted by {q, Sﬁw 3Q,gt,P:}.

5. SOME ERGODIC THEOREMS

X
Introduce the function G(x) 8 [ ,d° , 0(*) as in (4.6),
- 0% (z)

and consider the subclass & of &, consisting of those laws




u, ut(€) = a(&t) for which

N Rt Y -
(5.1) G(») = J-m 02(2) J_mexp{z Joa(z)dz}dy < o

recall also the processes (&t),(ct) of the preceding section,
corresponding to this law. According to Gihman and Skorohod [4;
§18], the probability distribution %%%% is ergodic for the
Markov process {Q,_9%, j?,ct,Pz} in the sense that the following

are true:

Fact 1. Positive Recurrence: The stopping times T =

zy
inf{t: e, = y} are well defined and a.s. finite for any 1z, y € RR;
besides,
(5.2) E, (T,,) < G(=)(2+]z-y D) ]z-y].

Fact 2. 1Invariance of the Probability Distribution Function G(*)/G.

For any 0 < t < T,

(5.3) J p‘z’{ct < y}dG(z) = G(y), y €R.

Fact 3. Law of Large Numbers: For any Borel function f(*) such

[+ -3

that J | £(y)|dG(y) < =, we have

T oo
lim % Jof(ct)dt = (;(lm) J‘mf(y)dc(y);

T

+ (5.4)

]
pu ;U =
( ;) and L (E)), any z = &4 € R.
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Fact 4. Ergodicity of the Distributions: For any function £(.)

as above,

(5.5) Lin EYE(2) = gioy | £0)460), any 2 = g

t»oo

As a consequence:

: u _ G(y)
iiz PZ{Ct <y} = SO NERARY

It follows from the properties of the function B(-) intro-
duced in (4.5) that the limiting distributions of the processes
(Ct) and (Et) exist simultaneously. Consequently, the probabili

F(-)

distribution function =) where

X

; X y
(5.6) F(x) 4 G(B(x)) = J Eg%yy = I exp{2 Ioa(z)dz}dy,

is invariant for the Markov process U?,j?r,,? ,Et,Pi}.

properties of the latter can be read off from those of the (Ct)

The ergodi

process:
\
(5.3)! [ Pi{ﬁt < y}F(x) = F(y), any 0 <t < T, y € R.
1 (T N i
(5.4)" TJ f(£,)dt — },(lm) J £(y)dF(y), a.s. (PY) and L}(' |
0 T - X £~,
(5.5)" lin B = iy I_mf(Y)dF(y), !

any Borel function f(*) such that:




w

J [£(y)| dF(y) < =, any x =&, €R.

Proposition 5.1: For any law u € ¥ ut(é) =

sponding solution process &: = &t of the system equation (4.4)

is a strongly Feller process, pocessing a unique invariant

probability distribution FY(:)/F%@), FY(x) = F(x)

as in (5.6),
for which (5.3)'-(5.5)'hold.

Proof.

A1l that remains to be proven is the strong Feller property
and the uniqueness of the invariant distribution, and it suffices

to do both on the (gt) process.

Feller, since (5.1) implies a fortiori: oz(z) > 02, all z € R,
some 02 > 0; sece Wonham [10]. On the other hand (ct)

The latter is indeed strongly

is recurre

and positive, by (5.2).. For such processes, Khas'minskii [7])

proves the existence of a unique invariant distribution, Q.E.D.

Definition 5.2. For the constant o of (2.5), 0 < a <2, let

&?a be the subclass of © consisting of those laws u,

ut(ﬁ) = a(&t) for which \

oo

© . X
(5.7) f calkIdFu(x) = I ealx]exp{z I a(z)dz}dx < =,
- 0

-0 [+ ]

It is evident from (5.4)' and the assumption (2.5) that, for

any u € %a:

= a(€t), the corrc

Tt 1 A e MBI B A

e




.
J(uw) = J(x,u) - limTl—IZ:fo[‘b(it) + Jug(6)] ]t

THeo

(5.8)

- S [ o+ lamnerto,

€ R.

[}
T

any X

6. THE OPTIMAL LAW IN

Introduce the function

A .
c(p) = |mm (up*+|ul) =1 - |pl, Ipl > 1

uj<l

(6.1) =0, [p| <1.

Our objective is to find a positive constant X and a function
V(x), twice continuously differentiable on IR and O(ealxl) as
|x|] + », with 0 < ® < 2 as in (2.5), satisfying the Dynamic
Programming equation

(6.2) N3 V(XD F e(v (X)) ¢ 0(x), x €R.

XX

We start with a preliminary result.

Lemma 6.1. Under the assumptions on the running cost function
¢ (-) made in section 2, there exists a unique solution (A,b) to

+ the pair of equations

o —

b
(6.3) Ab - J $(s)ds =
0
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(6.4) A o= 2 f e %S¢ (b+s)ds.
0

Proof. It suffices to prove that equation H(x) = 0,

} ® -2s X 1
(6.5) H(x) = 2x e $(x+s)ds - $(s)ds - 3
0 0
has a unique solution b on RrR'. Indeed, H(0) = -1/2 and

H' (x) = 2 fme'25[¢(x+s) S e (0)]ds + 2x J e %51 (x+s)ds > A0'(x), x > 0.
0 0

Clearly, H(x) » ©® as x » <, so there exists a unique number

b>0, such that H(b) = 0, Q.E.D.

The constants (A,b) being as in the previous Lemma, consider

the function Vv(x) with Vv(0) = 0 and derivative given by

X
vx(x) = 2\x - 2 JO¢(s)ds ; 0 < x <
X
(6. 6) =1 + A[ez(x'b)-l] -2 J ez(x's)¢(s)ds; x>b
b \
= -\)x(-x) N x < b,

Proposition 6.2. The function Vv(x) defined above is the

unique (up to an additive constant) solution of (6.2) in C(Z)GR),
.with A determined along with the constant b through (6.3)-(6.4).
v(x) is also the smallest nonnegative function satisfying

equation (6.2).
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b
1 while vx(b-) = 2\b - 2 J ¢ (s)ds
0

i

Proof. From (6.6), Vx(b+)

by (6.3). Therefore Vx(x) is continuous on JR. On the other han

vxx(x) = 2(A-9(x)) 30 < x < |
(6.7) - zEez(x'b)-Mx) -2 fxez("'s)ws)ds]; x> b
b
= \)xx(-x) H x <0

is clearly continuous on IR. From (6.4) and the fact that ¢(-)
is strictly increasing on RrR* one gets: Vxx(x) > 2(A-¢(b)) > 0,

on 0 < x < b, as well as

'[ v (x) = 2{:2 J e 205Xy (5yds - ¢(x)j] >0, on x > b.
X

The function vVv(x) 1is even and strictly convex, thercfore minimal

among nonnegative solutions of (6.2). By strict convexity,

0 < vx(x) <1, on 0 < x <b and Vx(x) >1, on x >b., It

remains to verify (6.2), which in the present case becomes

A= 3V (x) ¢ 6(x) ;o Ixl <
(6.2)" = % Vex (X} + 1 - v (x) +0(x);  x>b
= % vxx(x) + 1 + vx(x) + ¢ (x), X < -b.

(6.2)' is readily verified, by substitution. Uniqueness of
Vx(x) is a consequence of Lipschitz continuity of the function

c(p) defined in (6.1).
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Proposition 6.3. Suppose that X,G(x) are a constant a

C(Z)GR) function, respectively, for which (6.2) is satisfied, and
such that

-~

(i) 0 < Gx(x) <1, 0<x<b

(11) Y, (x) =1,

(iii) Gx(x) >1, x > b,

for some positive constant b.

Then the function V(x) 1is necessarily strictly convex,

therefore Gx(x) is strictly increasing, b < b and

>
|v
>

(6.8)

Proof. It is a straightforward exercise to verify that Gx(x)
will necessarily be of the form (6.6), with (X,B) replacing
(A,b). A necessary and sufficient condition for continuity of

gx(x) is then

—~ - b \
(6.3) Ab - I $(s)ds = 1/2,
0

while (iii) implies

-~

X-b

X
zj e2(XY)g (yydy 2 j e 250 (B+s)ds
© (6.9) X >b - -9 ——, all x > b.
e2()<-b)_1 1_6-2(x~b)

A necessary and sufficient condition for (6.9) is (6.10) below:

-



T@. F
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(6.10) x> 2 f e %50 (bes)ds.
0
Indeed, if X < 2 I e'zs¢(5+s)ds holds, then (6.9) is eventually
0

false as x + «, On the other hand, suppose that (6.10) is true;

to prove (6.9) it suffices to prove

o0 - _ t - R
(6.11) (1-e” 2% f ¢ (b+s)e %Sds > f o (b+s)e 2%ds, all t > 0
0 0

where t = x - b. But (6.11) is equivalent to:
I e %S0 (b+s) - ¢(b+s-t)]ds > 0, all t > 0,
t

which is obviously true since ¢(-) 1is strictly increasing.
o~
Relations (6.3), (6.10) arc thereforce necessary and sufficient
conditions for the feasibility of (i)-(iii). They imply that
H(S) < 0, H(-) being the function introduced in (6.5). But H(.)
is strictly increasing so b < b and thercfore X > A, from (6.3)
and (6.10). Strict convexity of V(x) 1is proven as in

Proposition 6.2, Q.E.D.

Once the solution of the dynamic programming equation (6.2)
corresponding to the smallest possible value of the constant A
has been constructed, we proceed to prove the main result of this

*section, namely the optimality in the class & (Definition 5.2)

of the law u:(ﬁ) = a*(Et), with

e



i

-sgn x, |x] > b

(6.12) a®(x)
0, Ix] <b

obtained through the minimization

= c(VX(x)), all x € R

(6.13) a"(x)-v (x) + [a*()] = min [uv () + uf] =
luf<1
[§3

Lemma 6.4. Vv(x) = O(e |x|)’ as x| » .

Proof. It is checked that for all x large enough

2 ® 2 2 a
v.(x) =1-2X+ 2 X Ixe Yo(y)dy <1 - 1+ 552 e X,
some ¢ > 0. The result follows recadily.

Martin Day has noted that, for any other pair

Remark. Dr.
(X,b) as in Proposition 6.3, the functions v (x),v(x) have a
growth of the order ellxl, as |x| » «. &

Theorem 6.5. The law u”* € ¥, defined through
<t<T,

u:(ﬁ) = a*(ét), all & € C[O,T]’ 0

with a*(-) as in (6.12), is optimal in ¥y Furthermore:

J*) = 2.




Proof. Consider any law u E,%L and the Markov process

{q, 9%, j?,E:,P:} -solution to the stochastic differential equation
(4.4). An application of Itd's rule to the process V(€:), along

with (6.13) and equation (6.2), yi-ids

VEY - v - f:
t
,

t t
At - fo[%(g:) + lus(éu)[]ds + f Vx(€:)dws, a.s. (p;).
0

t
)+ el - [y 6o

(Y4

I Npﬂ‘ r'th‘

t
VxBg) + eV ED) - lus(c:“)l}ds * fovx(a‘;)dws

v

Taking expectations, and noting that

t 2a|w_|
e s

t
EY j vz(iu)ds < Const.eza(lxl+t)}ju f ds < o,
0 X7s : b

X 0

one gets:

EU gu
(6.14) xvi t)

t
V(x) 1 u u u
T+ * ¢ Ey JO[%(ES) + Ius(€ )[]ds >, all x.

{
From (5.5)', (5.7) and Lemma (6.4) one gets

. U u, _ 1
1lim EXV(Et) =

i [ v, any x er.
too F (m) -0

while taking (5.8) into account and letting t + » in (6.14):

RPN

J(u) > A, any u € -%3'

On the other hand, (6.14) holds as an equality if wu = u . Therefore

!

U —
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J*) = A,

The last two relations prove optimality of u* in %y The

*
density of %Y (-) 1is given by

paly) = (1+2b)°1, ly] <b

(6.15)
1

(1+2b) “exp[-2(|yl-b)], |yl > b.

7. OPTIMALITY OF THE LAW u” in %

In this section the performance of the law u* of Theorem 6.5
is compared against the performance of any admissible nonanticipativ
control law u, and u* is proven optimal in the class %.

The method consists in considering the finite-horizon

optimization problem: minimize
u T -
E [0[¢(QS) + Ius(€)|]ds

subject to d&t = ut(E)dt + dwt, &0 = x and u € %. Roughly
{
speaking, the value function

T
VoL = anf B [ (0(6g) ¢ Jue)l1dss (1) €R x [0,T)
u€ % T-1

solves the Cauchy problem

et Whnahsas RO ars etadtr

(7.1) v =%v

T (V) +o(x); (x,T) €RX* (0,T].

XX
(7.2) V(x,0) = 0: X € R,

where «c(-) 1is the function defined in (6.1).
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For any law u € %, Itd's rule gives

X

T
B [ 0@+ a8 2 Ve,

and optimality of u® would follow if it were proved that:

lim yié%ll = X,
T

all x € R.

In the remaining of this section we justify the method and sub- 1

stantiate the above heuristics. J

Lemma 3.1: A priori bounds on the solution of the Bellman

equation and its gradient. Suppose that the Cauchy problem (7.1),

{7.2) has a CZ’1 solution V(x,T) on R * (0,T], with V(x,T1)
continuous on R % {0,T]. Then the following inequalities hold:
(7.3) V(x,7) < v(x) + A1, on R x[0,T],

(7.4) IVX(X,I)l < v‘(|x|), on IR x [0,T].

Proof. It is immediately verified that the fundion
2,1

M(x,T) = v(x) + A1 is a C solution in IR x (0,T] of the

Cauchy problem

1 3
(7.5) M o= 5 Mo+ c(M) +¢(x); on R x (0,T] *
(7.6) M(x,0) = v(x), on R




and that, if & is the parabolic operator

52 . c(vx)~c(Vx) 23
8)(2 Vx~Vx 8)( ﬁ

L=

B =

then

ZM-N) = 0, in R * (0,T)]

M(x,0) - V(x,0) = V(x) > 0, on R.

By the maximum principle (see [3]) one obtains (7.3).

Now consider a sequence {cn(p), n € N} of smooth (piecewise
CZ) approximations to the function c¢(p), with En(p) <0 a.e. on
along with the functions V(n)(x,T), M(n)(x,T) satisfying (7.1),
(7.2) and (7.5), (7.6) respectively, with c¢(-) replaced by cn(')
Under such an approximating scheme, V(n)(x,T), Vin)(x,T), Viz)(x,T)
converge as n * @ to V(x,T), Vx(x,T), Vxx(x,T) respectively,
uniformly on compact (x,T) sets. Similarly for the function
M(x,T) and its approximations.

It is easily checked that if .91 is the parabolic operator

< )y (n)
7.7y ¥ =1 M My 3y MG e
. 1 2 5;2‘ n' x X M(ﬁj_v(ﬁ) XX T
X X

oMvy <0, o 1< (0,1)
then:

M)En)(x’o) _ v)((n)(x’o) = \)x(x) > O, on ]R+.

It can be shown by yet another application of the maximum principle
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that Vii)(x,T) >0 on R * [0,T]. Therefore, the potential term

én(Min))-én(Vin))
m(n) _y ()
X X

Viz) is nonpositive on R x [0,T]), so that the

the strong maximum principle is applicable (see [3]) and gives

vV, s ™G, or VoG <M 1) = v o(x) on RY x [0,T)
(.

in the limit as n + =. (7.4) follows since \Y

x ,T) is

odd, Q.E.D.

Once the a priori bounds (7.3), (7.4) have been established,
I one can apply the method of Theorem VI 6.2 of Fleming and Rishel

[2] to prove the following result:

Proposition 7.2. The Cauchy problem (7.1)-(7.2) has a unique

2,1

C solution V(x,t) on IR % (0,T] that is continuous on

R * [0,T] and even in x.

By the approximation argument used in the proof of Lemma 7.1
(or directly; see [2], Exercise VI.9) it can be shown that

Vxx(x,T) >0 in R * [0,T].

Consider the optimal process (nl) for the finite horizon
problem, defined on the probability space (@, ¥,P) as the (strong)

solution of the stochastic differential equation

T . T
(7.8) dnt— c(vx(nt,r-t))dt + dwt, 0 <t <1

(7.9) n,. = x>0




where é(p) = -sgnp-1

_ *
{Ip]>13 = 2 (P).

Lemma 7.3. For any x > 0, consider the stopping time

S = inf{t < 13 nz = 0}
=T, if n_ >0, all 0 <t <
Then
S. T
(7.10) V (x,T) = E f ¢(n_)dt.
X 0 t

Proof. The gradient VX of the solution to the Cauchy problem

(7.1)-(7.2) is not a 2!

function; it belongs, however, to the
Sobolev space W;’I(D x [0,T]), for any p > 1 and any bounded
subset D = IR, and satisfies in that space the equation

(V) = % Vedux * é(VX)(Vx)x + $(x) on R *x (0,T], derived from
(7.1) by formal differentiation. For functions in the Sobolev
space a generalized 1to formula holds (Zvonkin [12}, Theorem 3)
which, applied to VX(HE,T-t) on [0,S] along with (7.81 and the

fact that Vx(n;,T~S) =0, a.s., yields (7.10), Q.E.D.

. . _% .
Consider now the "optimal process (gt) for the stationary

control problem':

(7.11) dg . = é(vx(g:))dt tdw,, t30

(7.12) £q = X,




24
defined on the same probability space (2, #,P) and with the same
initial condition as for (7.8), (7.9).

Lemma 7.4. IE:I < In:( <x +w 0 <t < T; a.s.(P).

ol

Proof. An easy consequence of the comparison theorem of Ikeda

and Watanabe [6] and (7.4) of Lemma 7.1.

From (7.10) notice that, for any 1 > 0, Vx(-,T) incrcases
to infinity as x »+ «, since ¢(-) does. Therefore, for any

T+ 0,
(7.13) s (1) 4 max{x > 0; VX(X,T) = 1}
is well-defined and finite.
Lemma 7.5. s(t) 1is left continuous and decreasing on RrR*.

Proof. It can be checked that for the approximating functions
introduced in the proof of Lemma 7.1: &Q(Vi?)) =0 in R x (0,T],

&q being the operator defined in (7.7), and Vi?)(x,O) = ¢(x) > 0,

on R'. By a maximum principlc argument: Vi?](x,T) > 0 on

+

R x [0,T], and therefore Vx(x,tz) > Vx(x,tl), 0 < <t x>0

2)
in the limit as n » =, This proves the monotonicity of s(°). Lef:

continuity is an easy consequence of definition (7.13) and monotonic®

Lemma 7.6. 1lim V_(x,t) = V_(x), uniformly on compact x-sets.
_— Tso X X




Notice that

Proof.

(Vo V= 7 V) L+ SV )L+ VGV, - E(V)))

X XX

<

[ ST

O Vidxx * €O O Vo
on R x (0,T], by convexity of V, monotonicity of ¢ and (7.4).
-~ *
An application of the generalized Ito formula to vx(ﬂz) - Vx(ﬁt,T t
gives:

*
0 ¢V (x) -V (x,T) < EV, (5p) = {er}vx(ﬁi)dp,

where:

R = inf{t < T: &7 = 0)
*
= 1, if ét >0, all 0 <t < T,
1+6 1+6

We note that: E (IE |) —~ J
*

- 00

(lyl)ps(y)dy < » as long as

2 \

0 < § « a - 1, by virtue of (5.5) and (6.15). So

sup EV (IE [) < =, which implies uniform integrability (and hence
1>0

also absolute continuity with respect to measure P) of the family

of random variables {vx(IE:I)} On the other hand,

>0

P(R= 1) < P(x+w, >0, all 0<t¢g 1) = 2°(XT-1/2) -1~

as T + o, yniformly on compact x-sets; see Gihman and Skorohod

2 n e Al o AN . R S AR et A

[4; §81]. The result follows by uniform absolute continuity.
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Corollary. s(T) + b, as T ¢t =,

Proposition 7.7. 1lim Vix,1) . A, any x € R.

T-»00 T

: / T . .
Proof. That 1lim sup LLE%—l < A, uniformly on compact x-sets, is a

T

consequence of (7.3). To prove the opposite inequality note that,

by virtue of Lemma 7.4,

Vix, 1)

E JT[NnI) + 1 Jdt
0 t

(Ingl>s(t-1))

(A"

T
Ef e v, Jdt
0 {|€t|>S(T-t)}

and therefore, for any x € IR,

1
Vix,1) > 1y J [0(E0) + 1 Jdt -
T T 0 t {I€:l>b}
1 1
(7.14) . Ioil’t‘x(s(t-t)) S P (0 - (B (-5 (1)

- Py (h))]de

where

* * * Y
o) = PEL s IEg - x) —= Fo) = [ e,

t+<n -

F*¥(-) is the ergodic probability distribution function correspondin

*
to the optimal law u in ¥y. Now

D

PPV IR R Y




- -
27
11"
(7.15) %12 T IO[ Ft,x(s(T_t)) - Lt,x(b) .
* : %
- { F(s(t-t)) - F (b)}]dt = 0.
Indeed, the integrand in (7.15) is dominated by
2 sup| Fy x()') - F*(y)l, which tends to zero as t + @, because
*
F is (absolutely) continuous and Ft X <5 Bt (see (1], p. 25
Ex. 8.1.13). Hence
.1 t 1 T * *
%12 T JO(E=t’x(s(t~t)) - 'Ft,x(b))dt = 112 T—JO F (s(t-t)) - F (b))dt =0

* *
since 1lim F (s(t)) = F (b), by the Corollary to Lemma 7.6. By

t+w

the same token, the entire second term on the right hand side of
(7.14) converges to zero as T + = while the first term converges
to A. Therefore, for any x € R:

lim inf
T

VOGT) 5 x,  QuE.D.

|

We are now in a position to prove the main result of this

section,

N .
Theorem 7.8. The law u of Theorem 6.5 is optimal in the

class % of admissible nonanticipative controls, i.e. for any

u€ %, x €R:

T
(7.16)  J(x,u) = lim inf % E: jom(&;‘) + u (€)]]dt > A = MOBE

T




Proof. Take any law u € % along with the Girsanov solution

process (EE)

(«, 9%,?2) as in Section 2, and apply Ito's rule to the process

satisfying d&‘t’ = ut(Eu)dt + dii, gg = x on

V(F,:,T-t), V(x,T) being the function of Proposition 7.2:
T
- u _ u - . u u o

T
1 u u u ~ J
+ 5 Vxx(£t,T-t) - Vt(ﬁt,T-t)]dt - IOVx(ét,T-t)dwt.

min (up+|u|), we get

Because c(p)
ul <1

(7.17) V(x,T)

A

T T
u u u ~ u
IO[¢(€t) + Iut(€ 1| 1dt - JOVX(E T-t)dw, a.s.  (P,),
any x €R, T > 0.
The expectation of the stochastic integral on the right hand side of (7.17)
is zero, because

T T 2ofw|
vi(ig)dt < const. eza(|x|+T) I E(e t )dt < e

T
u 2,1 u
E Iv@ ,T-t)dt < E [
xoxt xO 0 \

by virtue of (7.4), and it follows from (7.17) by taking expectations that

Vix,T) <

T E

T
% : JO[¢(€g) + Jue€™)|1dt; any x €R, T > 0.

*(7.16) is obtained by a passage to the 1limit as T =+ = and taking

into account the assertion of Proposition 7.7.
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